Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter.

نویسندگان

  • Tim Ståhlberg
  • Sergio Rodriguez-Rodriguez
  • Peter Fristrup
  • Anders Riisager
چکیده

The dehydration of glucose and other hexose carbohydrates to 5-(hydroxymethyl)furfural (HMF) was investigated in imidazolium-based ionic liquids with boric acid as a promoter. A yield of up to 42% from glucose and as much as 66% from sucrose was obtained. The yield of HMF decreased as the concentration of boric acid exceeded one equivalent, most likely as a consequence of stronger fructose-borate chelate complexes being formed. Computational modeling with DFT calculations confirmed that the formation of 1:1 glucose-borate complexes facilitated the conversion pathway from glucose to fructose. Deuterium-labeling studies elucidated that the isomerization proceeded via an ene-diol mechanism, which is different to that of the enzyme-catalyzed isomerization of glucose to fructose. The introduced non-metal system containing boric acid provides a new direction in the search for catalyst systems allowing efficient HMF formation from biorenewable sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bis-sulfonic acid ionic liquids for the conversion of fructose to 5-hydroxymethyl-2-furfural.

Homogenous bis-sulfonic acid ionic liquids (1 mol equiv.) in DMSO (10 mol equiv.) at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

متن کامل

Direct Transformation of Fructose and Glucose to 5- Hydroxymethylfurfural in Ionic Liquids under Mild Conditions

Direct dehydration of fructose and glucose to 5-hydroxymethylfurfural (5HMF) was studied using ionic liquids (ILs) without adding any catalysts. Various ILs were screened, and the highest 5-HMF yield of 95.6% was obtained using 1-butyl-3-methylimidazolium tosylate ([BMIM][TSO]) at 353 K for 30 min. Proton nuclear magnetic resonance (H NMR) spectra confirmed that the sulfonate hydrolysates of an...

متن کامل

Preparation of 5-(Hydroxymethyl)furfural by the Catalytic Degradation of Cellulose in an Ionic Liquid/Organic Biphasic System

This work has established the optimum reaction conditions in a biphasic system using microcrystalline cellulose as the raw material, an ionic liquid as the solvent, metal chloride as a catalyst, and an organic solvent as the extraction reagent. The optimum reaction conditions were microcrystalline cellulose:ionic liquid 1:10 (mass ratio), chromium(III) chloride (CrCl3) 6.8 mol% (based on the gl...

متن کامل

Pyridinium based ionic liquids as promoters for a green and selective synthesis of N-monomethylanilines

Pyridinium based ionic liquids derived from β-picoline and n-alkylbromides were synthesized by a simple procedure at ambient temperature and then characterized. These neutral ionic liquids were investigated for their dual role as the solvent and promoter for the selective synthesis of a series of N-monomethylanilines using dimethylcarbonate as the methylating agent. A solvent free gree...

متن کامل

Organocatalytic Upgrading of Furfural and 5-Hydroxymethyl Furfural to C10 and C12 Furoins with Quantitative Yield and Atom-Efficiency

There is increasing interest in the upgrading of C5 furfural (FF) and C6 5-hydroxymethyl furfural (HMF) into C10 and C12 furoins as higher energy-density intermediates for renewable chemicals, materials, and biofuels. This work utilizes the organocatalytic approach, using the in situ generated N,S-heterocyclic carbene catalyst derived from thiazolium ionic liquids (ILs), to achieve highly effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 2011